• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Pneumatic Tips

Tips, Trends, Resources, News and Information

  • Blog
  • Industry News
  • Air Preparation
  • Engineering Basics
  • Components
    • Actuators
    • Cylinders
    • Fittings
    • Gears
    • Grippers
    • Pumps
    • Air Compressors
    • Tubing
    • Vacuums
    • Valves
  • Pressure Sensing
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
You are here: Home / Engineering Basics / How do pneumatic rodless cylinders/slides work?

How do pneumatic rodless cylinders/slides work?

August 10, 2021 By Mary Gannon

Share

Contributed by Vicki Burt

In a rodless air cylinder — also called a rodless slide — motion is transmitted through the body length by an internal piston moving with the cylinder, driven by compressed air. The piston is attached to a shuttle or carriage, which supports the load and moves it in a linear direction with the piston.

CY1F low-profile Rodless Cylinder image courtesy of smc usa
CY1F low-profile rodless cylinder
Image courtesy of SMC USA

Rodless slides work well in applications with limited space, because when they are installed, the length is only slightly longer than the cylinder’s stroke. This means, for example, a 25 mm diameter rodless cylinder with a 1,000 mm stroke would take up 1,200 mm of space, opened or closed.

Other reasons for choosing rodless cylinders include:

  • Reliable, repetitive linear movement
  • Support high loads and moment forces
  • Clean operation with minimal chance of lubrication contamination
  • Higher speeds than conventional cylinders
  • Loads can be moved over large distances in faster times
  • No concerns about rod buckling
  • Smaller footprint for long stroke applications compared to typical rod-type cylinders
  • Minimal component maintenance reduces downtime

In general, rodless cylinders have the same basic components: a cylinder tube or barrel, a piston, inner and outer sealing bands, and end-cushioning end caps. A slide table assembly, also called a shuttle or carriage, is mounted directly above the piston, connected directly through a slot cut along the top of the cylinder body, indirectly through magnets located on both the piston and table, or by cables connected to the piston through a pulley.

Compressed air from the end caps moves the piston and carriage along the length of the cylinder barrel in either direction. The sealing bands prevent external leakage of air pressure and allow the carriage to move back and forth. Adjustable end cushioning on both ends prevents any hard stops at the end caps.

When choosing a rodless cylinder, it’s critical to consider how the load affects function, and to account for unwanted bending moments. Pitch, roll, and yaw moments are possible as well as the “jerking” forces from acceleration and deceleration of the carriage. Cylinders that are mounted vertically also need to consider the forces of gravity when moving and holding the load in place.

However, these factors are straightforward to design for, and the ability to support higher loads and moment forces are an advantage over conventional rod-type cylinders. With conventional cylinders, the rod extends beyond the cylinder barrel to push or pull the load. This creates the tendency to bend and buckle, creating excess wear on the seals and bearing. The weight of the cylinder rod can also sag under its own weight, causing misalignment and more bending and buckling. Rod-type cylinders travel at different velocities in forward and return strokes and are designed for short stroke lengths.

The most common applications for rodless cylinders are packaging, printing, automotive, cutting, material transfer, assembly, robotics, and electronics manufacturing. And they’re used across industries such as textiles and ceramics, testing and inspection, food and beverage production, and pharmaceuticals and chemicals to name a few.

You may also like:

  • Design of a pneumatic cylinder Image courtesy of Hafner Pneumatik
    What are single-acting pneumatic cylinders?

  • How do you specify pneumatic cylinders?

  • Why are pneumatic cylinders used over hydraulic ones?
  • AutomationDirect pneumatic design
    Pneumatic design 101: Go with the flow

  • Where are rodless cylinders used?

Filed Under: Actuators, Components, Cylinders, Engineering Basics

Primary Sidebar

Fluid Power World Digital Edition

Fluid Power World Digital EditionBrowse the most current issue of Fluid Power World and back issues in an easy to use high quality format. Bookmark, share and interact with the leading design engineering magazine today.

RSS Featured White Papers

  • eBook: Practical Guide to Pneumatics
  • Saving energy and service cost with electric linear systems
  • White Paper-How to Design Efficient Pneumatic Systems!

Fluid Power Design Guides

fluid
“pt
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.
Hose Assembly Tips

Footer

Pneumatic Tips

Fluid Power World Network

  • Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Sealing and Contamination Tips
  • Fluid Power Distributor Lookup

PNEUMATIC TIPS

  • Subscribe to our newsletter
  • Advertise with us
  • Contact us
  • About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy